Нормы радиации в помещении

Последствия облучения радиоактивными волнами

Поражение людей ионизирующим излучением может проявиться в виде лучевой болезни разной степени тяжести. Лучевая болезнь проявляется при дозе облучения, равной 1 зиверту. Увеличение дозы двукратно значительно увеличивает риск развития онкологического заболевания, а при трёхкратном увеличении велик риск смертельного облучения.

Первые симптомы лучевой болезни:

  • диарея;
  • синдром хронической усталости;
  • тошнота, рвота;
  • надсадный кашель;
  • нарушения со стороны сердечно-сосудистой системы.

Воздействие радиоактивных частиц может вызвать лучевые ожоги. При крупных дозах излучения происходит поражение эпителиоцитов, разрушение костной и мышечной тканей. Помимо ожогов, могут появляться метаболические нарушения, сопутствующие инфекции, лучевая катаракта и бесплодие.

Возможен также стохастический эффект, проявляющийся в появлении раковых опухолей. Чаще всего онкология возникает в молочной железе, щитовидной железе и нижних отделах кишечника.

Рентгены и зиверты: в чем разница

В новостных сводках — на сайтах информагентств и в эфире телеканалов — в освещении трагических событий в Японии используется термин «зиверт» — единица измерения радиационного фона в международной Системе СИ.

Для россиян более привычно понятие «микрорентген» — возможно, слово «зиверт» могло бы кого-то насторожить или спутать, поэтому обратимся к справочникам физических значений — чем отличается зиверт от рентгена?

Зиверт — это накопленная радиация в час, раньше были микрорентгены в час.

100 Р = 1 Зв, то есть 100 мкР = 1 мкЗв

При однократном равномерном облучении всего тела и не оказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30-60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лёгких в течение 10-20 суток;
  • 15 Зв из-за повреждения нервной системы в течение 1-5 суток.

Зи́верт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.).

1 зиверт — это количество энергии, поглощённое килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр.

Через другие единицы измерения СИ зиверт выражается следующим образом:

1 Зв = 1 Дж / кг = 1 м² / с² (для излучений с коэффициентом качества равным 1,0)

Равенство зиверта и грея показывает, что эффективная доза и поглощённая доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощённой дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.

Единица названа в честь шведского учёного Рольфа Зиверта (de:Rolf Sievert).

Раньше (а иногда и сейчас) использовалась единица бэр (биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы.

100 бэр равны 1 зиверту.

Существует 5 основных единиц измерения доз. Хотя некоторые из них совпадают по размерности, они несут различный смысл.

Рентген — внесистемная единица экспозиционной дозы радиоактивного облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух.

  • В переводе на систему СИ, 1 Р приблизительно равен 0,0098 Зв
  • 1 Р = 1 БЭР

Биологический эквивалент рентгена — устаревшая внесистемная единица измерения эквивалентной дозы излучения.

  • 1 БЭР = доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновских или гамма-лучей в 1 Рентген.
  • 1 БЭР = 0.01 Зв.
  • 100 БЭР равны 1 зиверту.

Грэй — единица поглощенной дозы излучения в системе СИ.

  • 1 Гр = поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.
  • 1 Гр = 1 Дж/кг = 100 рад.

Зиверт — единица эквивалентной дозы излучения в системе СИ.

  • 1 Зв = эквивалентная доза излучения, при которой:
    • — поглощенная доза излучения равна 1 грэю; и
    • — коэффициент качества излучений равен 1.
  • 1 Зв = 1 Дж/кг = 100 бэр.

Рад — внесистемная единица дозы излучения, поглощенной веществом.

  • 1 рад = доза радиации на 1 кг массы тела, эквивалентная энергии в 0.01 джоуля.
  • 1 рад = 0.01 Гр

Больше интересного в телеграм @calcsbox

Излучение от радиоактивных природных изотопов

На нашей планете можно выделить 23 радиоактивных изотопа, которые обладают большим периодом полураспада и которые наиболее часто встречаются в земной коре. Большая часть радиоактивных изотопов содержится в породе в очень малых количествах и концентрациях, и доля создаваемого ими облучения пренебрежимо мала. Но есть несколько природных радиоактивных элементов, которые оказывают влияние на человека.

Рассмотрим эти элементы и степень их влияния на человека.

Радиоактивные изотопы, облучения от которых нельзя избежать:

  • Калий 40К (β и γ излучение).
    Усваивается вместе с продуктами питания и питьевой водой. Содержится в нашем организме.
    Годовая нормативная доза – 0,17 мЗв/год – пункт 7.6 МУ 2.6.1.1088-02.
  • Углерод 14С.
    Усваивается вместе с продуктами питания. Содержится в нашем организме.
    Годовая нормативная доза – 0,012 мЗв/год – приложение №1 таблица 1.5 СанПиН 2.6.1.2800-10

Радиоактивные изотопы, облучения от которых можно избежать организационными мероприятиями:

Газ радон 222Rn (α излучение) и Торон 220Rn (α излучение) и их продукты радиоактивного распада.
Содержится в газах, поднимающихся из недр земли. Может содержаться в водопроводной воде, если она берется из источников, расположенных глубоко под землей (артезианские источники).
Годовая нормативная допустимая доза 0,2 мЗв/час = 1,752 мЗв/год – пункты 5.3.2 и 5.3.3 НРБ 99/2009 (СанПиН 2.6.1.2523-09)

Все остальные природные радиоизотопы, содержащиеся как в Земной коре, так и в атмосфере, оказывают пренебрежительно малое влияния на человека.

Если человек, добыл, переработал и выделил природные изотопы из руды или других источников, а затем их применил в строительных конструкция, минеральных удобрениях, машинах и механизмах и так далее, то действие этих изотопов уже будет техногенным, а не естественным и на них должны распространяться нормы для техногенных источников.

Обзор источников информации по проблеме исследования

Всем известно, что существует естественный радиационный фон (ЕРФ), с которым мы живем с рождения. Как утверждают ученые, задолго до того, как на земле возникла жизнь, на планете шел распад урана, и продукты этого распада постоянно выделялись из земной коры.

Сегодня мы с вами живём в век повышенной радиоактивности, и, величина допустимого уровня в 0,1- 0,2 мкЗв/ч (10- 20 мкР/с) считается нормальной, уровень 0,2- 0,6 мкЗв/ч (20- 60 мкР/ч) считается допустимым, а уровень свыше 0,6-1,2 мкЗв/ч (60- 120 мкР/ч) признан повышенным . Данные приведены согласно рекомендации Международной комиссии по радиационной защите (МКРЗ) и Всемирного общества здравоохранения (ВОЗ). Надо понимать, что искусственно создаваемые источники излучения (например, АЭС, рентгеновские исследования в поликлиниках, путешествия на самолетах и многое другое) постоянно повышают уровень естественного радиационного фона и поэтому требуется его корректировка.

Но об этом мало кто знает. Можно годами жить в радиоактивной зоне и не знать об этом. А последствия облучения нам хорошо известны, и этим пользуются средства массовой информации. Например, выдержка из новостной ленты одного интернет-сайта :

– 19.11.2012. Обнаружена партия радиоактивных автозапчастей из Японии. – 03.10.2012. Московская пенсионерка получила из банка радиоактивные купюры. – 18.08.2012. У берегов Японии выловлена рыба с радиоактивными изотопами цезия.

А это лишь крупинка информации! Многие люди, даже не усомнятся в ее правильности, такова психология человека, особенно невежественного. Может быть, оно так и есть!? Хочется привести еще немного интернет – фактов, как нам кажется, более близких к каждому из нас.

«… В Новосибирске во дворе частной школы, где учится более 500 детей, была обнаружена щебёнка из карьера Мочище, закрытого ещё десять лет назад из-за превышения предельно допустимого радиоактивного фона. По данному факту было возбужденно уголовное дело. О последствиях, которые имел для здоровья детей такой радиоактивный двор, судить можно будет только через 10-15 лет. Специалисты www.dozimetr.biz подчеркивают, что радиация действует незаметно и поражения, вызванные ею, имеют отложенный эффект. Тем не менее, это не мешает нечистым на руку предпринимателям добывать материал в опасном месте, продавая его ничего не подозревающим горожанам». «… В Кузьминках, в районе Волжского бульвара, нашли “радиационную мину”. Здесь хотели строить гаражи, стали исследовать грунт. Измерили – «фонит»! Излучение – 2830 микрорентген в час. Почти в 30 раз больше нормы! Очаг ликвидировали, но, сколько их еще осталось?»

И, в завершении факты, для всех жителей Москвы и Московской области, да и для приезжих тоже.

«… Старший специалист компании «Экостандарт» Евгений Кузьменко, проводил исследования по Москве. С дозиметром-радиометром ДКС – 96 он обнаружил: – в метро на переходе с “Театральной” на “Охотный ряд” радиация вдруг вырастает в три с лишним раза – до 20 мкР/час (это терпимый уровень, здесь «фонит» гранит); – у гранитных камней на Патриаршем мосту под ногами радиация 21 мкР/час, а возле колонн, которые скрепляют ограду, уже 34 (это серьезно, на 20 единиц выше обычного фона для этого места); – по Гоголевскому бульвару радиационный фон низкий – 6 – 7 мкР/час, но при подходе к памятнику Гоголю, фон у ступеней, ведущих к монументу – 38 – 40 мкР/час (!)»

Впечатляет, не правда ли? Как видите, даже в общественных местах в метро и в центре города можно столкнуться с «радиоактивными» проблемами. Вот посиди после этого на ступенях монумента великого писателя да поброди по Патриаршему пруду! Радиация из нашего организма, как известно, не выводится… Стоит ее накапливать? Ответ очевиден. А о последствиях влияния радиоактивного излучения на живой организм и говорить не приходится: все ясно без слов…(см. приложение №1).

Но прогулки по Москве, это лишь небольшая часть времени, которую вы посвящаете себе, а теперь, может, и вовсе забудете дорогу в эти места. А ведь мы можем и жить и работать в таких местах!

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм — не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения — также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте — при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

В правилах безопасности для тех, кто работает с радиоактивными веществами, ограничения по облучению указаны, в единицах суммарной мощности дозы ионизирующего излучения, и в единицах мощности поглощенной дозы

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации.

Опасность для здоровья, вызванная радиацией

Мощность дозы излучения, мкЗв/чОпасно для здоровья
>10 000 000Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000Очень опасно для здоровья: рвота
100 000Очень опасно для здоровья: радиоактивное отравление
1 000Очень опасно: немедленно покиньте зараженную зону!
100Очень опасно: повышенный риск для здоровья!
20Очень опасно: опасность лучевой болезни!
10Опасно: немедленно покиньте эту зону!
5Опасно: как можно быстрее покиньте эту зону!
2Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах
1Безопасно: только для кратковременного нахождения в зоне, например в самолете при посадке или на взлете
0,5Безопасно: можно жить в этой зоне долго или не очень долго, например, в здании со стенами из гранита
<0,2Безопасно: уровень радиации в норме

Автор статьи: Kateryna Yuri

Эквивалентная доза облучения

Единицы для измерения поглощенной дозы облучения часто используют в научной литературе, но большинство неспециалистов плохо с ними знакомы. В СМИ чаще используют единицы эквивалентной дозы облучения. С их помощью легко объяснить, как радиация влияет на организм в целом и на ткани в частности. Единицы эквивалентной дозы облучения помогают составить более полную картину о вреде радиации, так как при их вычислении учитывают степень повреждения, наносимого каждым видом ионизирующего излучения.

Вред, наносимый тканям и органам тела разными типами ионизирующего излучения, вычисляют с помощью величины относительной биологической эффективности ионизирующих излучений

. Если на два одинаковых тела действует излучение одного типа с одинаковой интенсивностью, то относительная эффективность и эквивалентная доза — равны. Если же типы радиационного излучения разные, то и эти две величины — разные. Например, вред, наносимый бета-, гамма- или рентгеновскими лучами — в 20 раз слабее, чем вред от облучения альфа-частицами. Стоит заметить, что альфа-лучи приносят вред организму только в том случае, если источник излучения попал внутрь организма. За пределами организма они практически неопасны, так как энергии альфа-лучей не хватает даже для преодоления верхнего слоя кожи.

Эквивалентную дозу облучения вычисляют, умножив поглощенную дозу облучения на коэффициент биологической эффективности радиоактивных частиц, для каждого вида радиации. В примере, приведенном выше, этот коэффициент для бета-, гамма- и рентгеновских лучей равен единице, а для альфа-лучей — двадцати. Пример единиц эквивалентной дозы радиации — банановый эквивалент и зиверты.

Зиверты

В зивертах измеряют количество энергии, поглощенной телом или тканями определенной массы во время радиационного излучения. Для описания вреда, который радиация наносит людям и животным, также обычно используют зиверты. Например, смертельная доза радиации для людей — 4 зиверта. Человека при такой дозе радиации иногда можно спасти, но только если немедленно начать лечение. При 8 зивертах смерть неизбежна, даже с лечением. Обычно люди получают намного меньшие дозы, поэтому часто используют миллизиверты и микрозиверты. 1 миллизиверт равен 0,001 зиверта, а 1 микрозиверт — 0,000001 зиверта.

Банановый эквивалент

Доза одного бананового эквивалента равна 0,1 микрозиверта

В банановом эквиваленте измеряет дозу радиации, которую человек получает, когда съедает один банан. Эту дозу также можно выразить в зивертах — один банановый эквивалент равен 0,1 микрозиверта. Бананы используют потому, что в них содержится радиоактивный изотоп калия, калий-40. Этот изотоп встречается и в некоторых других продуктах. Некоторые примеры измерений в банановом эквиваленте: рентген у стоматолога эквивалентен 500 бананам; маммограмма — 4000 бананам, а смертельная доза радиации — 80 миллионам бананам.

Не все согласны с использованием бананового эквивалента, так как радиация разных изотопов по-разному влияет на организм, поэтому сравнивать эффект калия-40 с другими изотопами — не совсем правильно. Также, количество калия-40 регулируется организмом, поэтому когда его количество в организме увеличивается, например, после того, как человек съел несколько бананов, организм выводит лишний калий-40, чтобы поддерживать баланс количества калия-40 в организме постоянным.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4-15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение — это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное — от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.

Доза радиации которую получает человек в течении года

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1-2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. ЗивертВоздействие на человека
1-2Лёгкая форма лучевой болезни.
2-3Лучевая болезнь. Смертность в течение первого месяца до 35%.
3-6Смертность до 60%.
6-10Летальный исход 100% в течение года.
10-80Кома, смерть через полчаса
80 и болееМгновенная смерть

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.


Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.


Доза радиации которую получает человек в течении года Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.


Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. ЗивертВоздействие на человека
1–2Лёгкая форма лучевой болезни.
2–3Лучевая болезнь. Смертность в течение первого месяца до 35%.
3–6Смертность до 60%.
6–10Летальный исход 100% в течение года.
10–80Кома, смерть через полчаса
80 и болееМгновенная смерть

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

  • Предыдущее: Как сделать навес из профлиста в своем дворе
  • Следующее: Как сделать шляпу цилиндр из картона

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Последствия радиоактивного облучения

В зависимости от дозы облучения последствия могут быть абсолютно разными. От нулевых (когда организм сам справился с опасными изотопами), до летальных, когда смерть может наступить уже через несколько часов в результате поражения центральной нервной системы.

Самым распространенным итогом такого облучения являются раковые новообразования. Не намного реже возникают и другие патологии пищеварительной системы и дыхательных путей.

Но в целом радиация может отразиться на любом отдельно взятом органе или нескольких сразу. Этим она и опасна, ведь предсказать ее влияние просто невозможно.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий