Как проводить измерения мегаомметром

Мегаомметр

Мегаомметр — что это такое

Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.

По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.

Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.

Для чего нужен мегаомметр

Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.

Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.

Принцип работы мегаомметра

Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.

Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.

Какие бывают мегаомметры

Название моделиДиапазон измерения сопротивленияИзмерительное напряжениеМасса прибораГабаритные размеры
ЦС0202-1, ЦС0202-2от 200 кОм до 100 ГОмот 100 В до 2500 Вдо 1 кг.220х156х61 мм.
ЭС0210, ЭС0210-Гот 0 кОм до 100 ГОмот 0 В до 600 Вдо 1,9 кг.155х141х201 мм.
ЭС0202/1-Г, ЭС0202/2-Гот 0 кОм до 10 ГОмот 100 В до 2500 Вдо 2,2 кг.210х150х230 мм.

Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.

У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.

{SOURCE}

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

На что обращать внимание при работах с мегаометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Измерение сопротивления обмоток машин (электродвигателей) и аппаратов

Для того чтобы измерить сопротивления обмоток в различных аппаратах при помощи мегаомметра, необходимо следовать следующему алгоритму действий:

  1. Обесточивание двигателя. Это необходимо для повышения безопасности проведения работ.
  2. Открытие крышки двигателя со всеми выводами использующихся обмоток.
  3. Установка напряжения для тестирования. Если двигатель эксплуатируется при напряжении до 1000 В, для проверки достаточно установить показатель в 500 В.
  4. Прикрепление одного щупа на корпус моторного отсека, другого – к имеющимся на устройстве к одному из выходов.

Также дополнительно необходимо убедиться в правильности соединения обмоток. Это можно сделать посредством подключения щупов парами.

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ I

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

Сейчас читают:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.

Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети

Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих  вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.

Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).

Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления

Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.

Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) – мегаомметры старого образца.Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства.Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Опасность повышенных напряжений

Встроенный генератор характеризуется такими показателями выходной мощности, которых хватает не только для оценки состояния изоляции, но и для получения серьезного ожога. Из-за этой особенности к использованию прибора допускаются только обученные электротехники, имеющие как минимум 3 группу допуска к таким приборам.

При выполнении замеров с помощью повышенного напряжения нужно охватить проверяемый участок, клеммы и провода. Для обеспечения защиты задействуются щупы с характерной изоляцией. Одной стороной они фиксируются к проводам, а другая часть оснащена предохранительными кольцами. В результате, это препятствует касанию к открытым участкам и предотвращает возможный удар током.

Чтобы провести измерение, на таких устройствах предусматривается специальная рабочая зона, которая не проводит ток и является безопасным местом для удерживания в руках. Для подключения к схеме используется зажим типа «крокодил» с хорошей изоляцией. Любые другие провода или самостоятельные щупы не допускаются. К тому же, для повышения безопасности процедуры проверяемый участок нужно изолировать от посторонних людей

Это по-особому важно при проверке сопротивления в длинномерных кабелях, имеющих протяженность до нескольких км

Что касается наведенного напряжения, то оно играет весомую роль в точности проводимых измерений. Электроэнергия, которая проходит по проводам ЛЭП, способна создавать определенное магнитное поле, измеряющееся с учетом синусоидального закона. Если кабель обладает внушительной протяженностью, показатели этого напряжения становятся очень большими.

В зависимости от этого фактора точность измерения существенно меняется. Объясняется это тем фактом, что величина и направление тока, проходящего по прибору, остаются неизвестными. Он возникает под воздействием наведенного напряжения, а его показатели появляются возле собственных показаний устройства. В результате на цифровом экране отображается сумма двух токовых величин, а поставленная задача остается нерешенной. Поэтому измерять сопротивления изоляции при наличии любых типов напряжения — бесполезная трата времени и сил.

Как подключить мегаомметр?

Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.

Watch this video on YouTube

Для проверки изоляции кабеля мегаомметром создают так называемый экстремальный случай, при котором на испытуемый участок подают напряжение выше номинального, но в допустимых нормах, прописанных в технической документации.

Например: генератор мегаомметра может выдавать:

  • 100V;
  • 250V;
  • 500V;
  • 700V;
  • 1000V;
  • 2500V.

Соответственно подача напряжения должна быть на порядок большей.

Длительность процесса измерения обычно не превышает 30 секунд или минуты, это необходимо для более точного выявления дефектов, а также исключения их последующего появления при перепадах напряжения в сети.

Основа технологического процесса измерения сопротивления это: подготовка к процессу, его выполнение и финальный этап.  Каждый из них включает определенный перечень манипуляций необходимых для достижения поставленной цели без ущерба для окружающих и в первую очередь для себя.

При подготовке к работе следует организовать свои действия, изучить схему электрической установки, чтобы исключить возможную поломку, а также обеспечить свою безопасность.

Начиная работу, следует прежде проверить прибор на исправность. Для этого выводы соединяют с измерительными проводами. Затем их концы соединяют друг с другом пытаясь закоротить. После подачи напряжения замеряют показания измерений (они должны быть равны нулю). Следующий этап предусматривает повторный замер. В случае отсутствия неисправностей показание должно отличаться от предыдущего.

Затем подсоединяют переносное заземление к контуру земли, проверяют и обеспечивают отсутствие напряжение на участке, устанавливают переносное заземление, собирают схему измерения прибора, снимают переносное напряжение, снимают остаточный заряд, отключают соединительный провод, снимают переносное напряжение.

Финальный этап предусматривает восстановление разобранных цепочек, снятие шунтов и закороток, а также подготовку схемы к рабочему режиму. Документируют полученные результаты измерений сопротивления изоляционного слоя в акте поверки изоляции.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Для чего предназначены токоизмерительные клещи?

Что такое петля фаза-ноль простым языком — методика проведения измерения

Прозвонка проводов с помощью мультиметра — что это значит и как выполняется

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий